skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Scott Williams, Santosh Kurinec"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aldo R. Boccaccini (Ed.)
    We report doping of thin (~60 nm) amorphous silicon (a-Si) on glass substrate to form n + polycrystalline silicon on glass in selective regions using Monolayer doping (MLD) via Flash Lamp Annealing (FLA). The phosphorus monolayer was formed on the exposed regions of SiO2 patterned a-Si, through functionalization with chemically bound Diethyl vinylphosphonate (DVP) dopant molecules. The samples were capped with SiO2 and annealed using a single xenon flash pulse (5.0 J/cm2, 250 μs) to simultaneously crystallize a-Si, incorporate and activate phosphorus dopants. SIMS results show an average concentration of 8x1019 cm−3 in the 60 nm of thin silicon on glass. Electrical results show a resistivity of ~6.60x10−2 Ω.cm in doped regions. N-channel field effect transistor devices are successfully demonstrated using this MLD-FLA technique. 
    more » « less